g05 — Random Number Generators g05mrc

NAG C Library Function Document

nag rngs gen_ multinomial (g0Smrc)

1 Purpose

nag_rngs_gen multinomial (g05mrc) generates a sequence of n variates, each consisting of & pseudo-
random integers, from the discrete multinomial distribution with £ outcomes and m trials, where the
outcomes have probabilities py, p,, ..., p, repectively.

2 Specification

void nag_rngs_gen_multinomial (Nag_OrderType order, Integer mode, Integer m,
Integer k, const double p[], Integer n, Integer x[], Integer pdx,
Integer igen, Integer iseed[], double r[], NagError xfail)

3 Description

nag_rngs_gen_multinomial (g05Smrc) generates a sequence of n groups of k integers x; ; for j = 1,2,... k
and i = 1,2,...,n, from a multinomial distribution with m trials and k& outcomes, where the probability of
T =1, for each i=1,2,....k1is

Piy=1Iy,...iy = I}) = Hp]

..Ik.
I,p1p2 Prs
./ 1 J Jj=

I'I'

where

k k
ijzl and le:m.
=1 =1

A single trial can have several outcomes (k, say) and the probability of achieving each outcome is known
(pj, say). After m trials each outcome will have occurred a certain number of times. The £ numbers
representing the numbers of occurrences for each outcome after m trials is then a single sample from the
multinomial distribution defined by the parameters &, m and p,, for j = 1,2,...,k This function returns
n such samples with each sample being stored as a row in a two-dimensional array of integers.

When k£ =2 this distribution is equivalent to the binomial distribution with parameters m and p = p,
(nag_rngs_binomial (g05mjc)).

The variates can be generated with or without using a search table and index. If a search table is used then
it is stored with the index in a reference vector and subsequent calls to nag rngs gen multinomial
(g05mrc) with the same parameter values can then use this reference vector to generate further variates.
The reference array is only generated for the outcome with greatest probability. The number of successes
for the outcome with greatest probability is calculated first as for the binomial distribution
(nag_rngs binomial (g05mjc)); the number of successes for other outcomes are calculated in turn for
the remaining reduced multinomial distribution; the number of successes for the final outcome is simply
calculated to ensure that the total number of successes is m.

One of the initialisation functions nag rngs init_repeatable (g05kbc) (for a repeatable sequence if
computed sequentially) or nag rngs_init_nonrepeatable (g05kcc) (for a non-repeatable sequence) must be
called prior to the first call to nag_rngs gen multinomial (g05mrc).

4 References
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley

[NP3645/7] g05mre. 1

g05mrc NAG C Library Manual

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: mode — Integer Input
On entry: a code for selecting the operation to be performed by the function:
mode = 0
Set up reference vector only.
mode = 1

Generate variates using reference vector set up in a prior call to nag rgs gen multinomial
(g05mrc).

mode = 2
Set up reference vector and generate variates.
mode = 3
Generate variates without using the reference vector.

Constraint: 0 < mode < 3.

3: m — Integer Input
On entry: the number of trials, m, of the multinomial distribution.

Constraint: m > 0.

4: k — Integer Input
On entry: the number of possible outcomes, k, of the multinomial distribution.

Constraint: k > 2.

5: p[k] — const double Input

On entry: contains the probabilities p;, for j=1,2,... k, of the k possible outcomes of the
multinomial distribution.

Constraint: 0.0 < p[j—1] < 1.0 and Y7, p[j — 1] = 1.0.

6: n — Integer Input
On entry: the number, n, of pseudo-random numbers to be generated.

Constraint: n > 1.

7: x[dim] — Integer Output

Note: the dimension, dim, of the array x must be at least max(l,pdx x k) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On exit: the first n rows of x each contain k£ pseudo-random numbers representing a k-dimensional
variate from the specified multinomial distribution.

g05mrc.2 [NP3645/7]

g05 — Random Number Generators g05mrc

12:

6

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > n;

if order = Nag_RowMajor, pdx > k.
igen — Integer Input
On entry: must contain the identification number for the generator to be used to return a pseudo-
random number and should remain unchanged following initialisation by a prior call to one of the
functions nag_rngs_init repeatable (g05kbc) or nag_rngs init_nonrepeatable (g05kcc).
iseed[4] — Integer Input/Output
On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

r(dim| — double Input/Output

Note: the dimension, dim, of the array r must be at least 22 4+ 20,/m x p_maz(1 — p-maz) when
mode < 3 and at least 1 otherwise.

On exit: the reference vector.

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, mode = (value).
Constraint: 0 < mode < 3.

On entry, m = (value).
Constraint: m > 0.

On entry, k = (value).
Constraint: k > 2.

On entry, n = (value).
Constraint: n > 1.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, pdx = (value), n = (value).
Constraint: pdx > n.

On entry, pdx = (value), k = (value).
Constraint: pdx > k.

NE_BAD PARAM

On entry, p[i — 1] < 0.0 or p[¢ — 1] > 1.0 where: i = (value) and p[i — 1] = (value).

[NP3645/7] g05mrc.3

g05mrc NAG C Library Manual

NE_PREV_CALL

max(p[i — 1]) or m is not the same as when r was set up in a previous call. Previous value of
max(p[i — 1]) = (value), max(p[i — 1]) = (value). Previous value of m = (value), m = (value).

NE_REAL

On entry, the sum of p[i — 1], ¢ = 1,...,Kk is not unity. The difference from unity in the summation
is: (value).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Not applicable.

8 Further Comments

Only the reference vector for one outcome can be set up because the conditional distributions cannot be
known in advance of the generation of variates. The outcome with greatest probability of success is
chosen for the reference vector because it will have the greatest spread of likely values.

9 Example

The example program prints 20 pseudo-random k-dimensional variates from a multinomial distribution
with k=4, m = 6000, p, =0.08, p, =0.1, p; =0.8 and p, = 0.02, generated by a single call to
nag_rngs gen multinomial (g05mrc), after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text

/* nag_rngs_gen_multinomial (g05mrc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{
/* Scalars */
Integer i, igen, j, k, m, n, nr;
Integer exit_status=0;
Integer pdx;
NagError fail;
Nag_OrderType order;

/* Arrays */

double *p=0, *r=0;
Integer *x=0;

g05mrc.4 [NP3645/7]

205 — Random Number Generators

Integer iseed[4];

#ifdef NAG_COLUMN_MAJOR
#define X(I,J) x[(J-1)#*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

Vprintf ("g05mrc Example Program Results\n\n");
k = 4;

n = 20;

nr = 16007;

/* Allocate memory */
if (!(p = NAG_ALLOC(k, double)) ||
! (r = NAG_ALLOC(nr, double)) ||
! (x = NAG_ALLOC(n * k, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
#ifdef NAG_COLUMN_MAJOR
pdx = n;
#else
pdx = k;
#endif

/* Set the distribution parameters P and M */
pl[0] = 0.08;

pll] = 0.1;
pl2] = 0.8;
pl3] = 0.02;
m = 6000;

/* Initialise the seed to a repeatable sequence #*/
iseed[0] = 1762543;

iseed[1] = 9324783;

iseed[2] = 42344;

iseed[3] = 742355;

/* igen identifies the stream. */
igen = 1;

gO05kbc(&igen, iseed);

/* Choose MODE = 2 */

gO5mrc(order, 2, m, k, p, n, x, pdx, igen, iseed, r, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO5mrc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= k; ++3)
{
Vprintf ("%121d%s", X(i,j), j%10 == [l J == 4 2"\n":
}
3
END:
if (p) NAG_FREE(p);
if (r) NAG_FREE(r);
if (x) NAG_FREE(x);
return exit_status;
3
[NP3645/7]

g0Smrc

g05mrc.5

g0Smrc

9.2 Program Data

None.

9.3 Program Results

gO05mrc Example Program Results

503
452
488
443
471
480
487
473
516
459
499
489
486
454
526
512
477
476
461
476

615
536
581
624
554
609
568
609
580
582
582
594
597
543
599
574
582
615
654
595

4758
4851
4793
4820
4851
4795
4807
4792
4787
4842
4801
4794
4806
4878
4745
4790
4832
4789
4743
4812

124
161
138
113
124
116
138
126
117
117
118
123
111
125
130
124
109
120
142
117

NAG C Library Manual

g05mre.6 (last)

[NP3645/7]

	g05mrc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	mode
	m
	k
	p
	n
	x
	pdx
	igen
	iseed
	r
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_BAD_PARAM
	NE_PREV_CALL
	NE_REAL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

